Схема подключение электромагнита тельфера тэс 10000 531

Электромагнитная индукция ч.3. Н. Тесла и его загадки | Автор темы: Inell

Один из ранних патентов Николы Тесла описывает новый способ намотки катушек.
Этот способ он назвал бифилярной намоткой, т.к. катушка мотается сразу двумя параллельными проводами и считал эту намотку очень важным изобретением:


«Бифилярная катушка — электромагнитная катушка, которая содержит две близко расположенных, параллельных обмотки.
Есть четыре типа бифилярно намотанных катушек:
1. параллельная намотка, последовательное соединение;
2. параллельная намотка, параллельное соединение;
3. встречно намотанная катушка, последовательное соединение;
4. встречно намотанная катушка, параллельное соединение.
Некоторые бифилярные катушки намотаны так, что ток в обеих обмотках течёт в одном и том же направлении. Магнитное поле, созданное одной обмоткой складывается с созданным другой, приводя к большему общему магнитному полю. В других — витки расположены так, чтобы ток протекал в противоположных направлениях. Поэтому магнитное поле, созданное одной обмоткой равно и направлено противоположно созданному другой, приводя к общему магнитному полю равному нулю. Это означает, что коэффициент самоиндукции катушки — ноль».
На рисунке выше изображена катушка первого вида и в ней магнитные поля обмоток складываются. Тесла указывал на то, что магнитное поле такой катушки намного больше, чем у обычной.
Вот так выглядит катушка с нулевой самоиндукцией (второй вид):


Любому специалисту по одному её виду становится сразу понятно, что в такой катушке не может появиться индукционный ток, т.к. он будет направлен в обоих проводах в одну сторону и на концах проводов никакой разности потенциалов не будет. Такая катушка будет только греться, но никакой энергии не выдаст. Два оставшихся вида намотки – это частные случаи двух первых и особого интереса не представляют.
Т.к. безындукционная намотка слишком наглядна, то все известные мне изобретатели вечных двигателей сконцентрировались на первом виде намотки, дающем большое магнитное поле. Однако мне долго не давало покоя совершенно не понятное описание катушки в патенте. Вот этот текст:
«Я выяснил, что в каждой катушке существуют определённые взаимоотношения между её самоиндукцией и ёмкостью, что позволяет току данной частоты и потенциала проходить через неё с омическим сопротивлением (DL : здесь Тесла имеет в виду исчезновение реактивного сопротивления) или, другими словами, как если она работает без самоиндукции. Это происходит в результате взаимоотношений между характером тока и самоиндукцией и ёмкостью катушки, т.е. количество последнего достаточно для нейтрализации самоиндукции для данной частоты. Известно, что чем выше частота или разность потенциалов тока, тем меньше ёмкость требуется для нейтрализации самоиндукции, поэтому в любой катушке, особенно небольшой ёмкости, можно достичь поставленных целей, если добиться нужных условий».
И в конце что-то вроде предупреждения:
«Применяя моё изобретение, специалисты в этой области должны хорошо понимать зависимость между понятиями ёмкость, самоиндукция, частота и разность потенциалов тока. Также как и понимать какая ёмкость достигается и какая намотка должна иметь место для каждого конкретного случая».
Действительно, у каждой катушки есть ещё и своя небольшая ёмкость, которая скорее создаёт дополнительные проблемы, чем помогает их решить. К тому же, никто не делает конденсаторы из провода. В общем, стало понятно только то, что патент серьёзно правили и не оставили в нём самой главной информации, до которой, без глубокого понимания процесса, дойти невозможно.
Возможно, что на этом всё и закончилось бы, но мне взбрело в голову намотать катушку первого вида, чтобы проверить, на сколько сильнее магнитное поле она создаст, по сравнению с обычным электромагнитом.
Я нашёл катушку от старого реле длиной 5 см и с сопротивлением обмотки 300 Ом. При подаче на неё постоянного напряжения в 12 В контакты немного искрили и к сердечнику притягивалась железная шайба. Не очень сильно, но наглядно. Ток в цепи был около 40 мА, что соответствует закону Ома.
Т.к. катушка Тесла рассчитана на переменный ток, не подразумевает размещение нескольких дисков из обмоток рядом, а намотка проводом имела бы очень низкое сопротивление и просто сгорела бы от постоянного напряжения, я решил увеличить площадь сечения провода и намотал около 40-50 витков фольгой из старого электролитического конденсатора (очень сложно было ровно мотать сразу два слоя фольги с бумажными изоляторами, поэтому витки не считал). Соединил я обмотки по первому виду. Получилась катушка такой же длины, в два раза толще и с суммарным сопротивлением 7 Ом. По закону Ома ток в такой катушке должен был быть чуть меньше 2 А и фольга при подключении если и не сгорит сразу, то может сильно нагреться.
Однако, меня ждал сюрприз. При подключении питания была чуть заметная искра, а железная шайба даже не шелохнулась. Я сначала решил, что сработала защита от короткого замыкания, но оказалось, что нет. Тогда я померял сопротивление катушки и просто не поверил прибору: оно постоянно менялось от 1-2 Ом до 700 Ом и полного разрыва цепи. Пришлось вскрывать изоляцию катушки и мерять сопротивление каждой обмотки отдельно. Тут всё было в полном порядке: 3 и 4 Ома. Однако сопротивление всей цепи так и прыгало дальше. Вот тут-то я и вспомнил про текст из патента и какие-то упоминания про увеличенную ёмкость такого вида катушек. Я померял ёмкость своей катушки и прибор показал ровно 30 мкФ! Это при том, что обе обмотки соединены вместе!
Тогда я подключил питание, что бы померять ток и оказалось, что ток через неё практически не проходит (нужно будет проситься к товарищу с осциллографом и более точными приборами). Железная шайба не притягивалась вообще и магнитного поля я не обнаружил. Это было странно хотя бы потому, что все пишут про значительное увеличение магнитного поля.
После этого, раз это наполовину конденсатор, я стал мерять напряжение на отключенной катушке. Тут возникла ещё одна загадка: я ожидал, что напряжение будет порядка нескольких вольт и постепенно падать, как на обычном конденсаторе, а оказалось, что оно тоже постоянно колеблется, причём в бОльшую сторону. Сразу после отключения питания я увидел на контактах 0.5 В и оно начало расти до 0.8 В. Когда катушка пролежала сутки на контактах всё равно было остаточное напряжение в 0.2 В, которое в ходе измерения достаточно быстро опять доросло до 0.8 В. Это не так много, но тут дело в том, что катушка никак не хочет разряжаться. Даже после короткого замыкания она довольно быстро набирает свои 0.8 В. Возможно, это наводка от радиоволн, но на обычной катушке от реле, у которой витков раз в 30 больше ничего такого не наблюдается. Буду разбираться. Зато про намотку бифилярной катушки лентой и её свойствах я нигде упоминаний не нашёл, так что возможно буду первооткрывателем :)
С другой стороны, это ведь элементарно! Если Тесла хотел создать катушку с большой ёмкостью, то он просто обязан был делать её из ленты, как и конденсаторы, а не из провода. К тому же, он постоянно писал, что его катушка позволяет накапливать в себе намного больше энергии. Именно накапливать. Почему об этом не сохранилось никакой информации? Получается, что он создал LC колебательный контур без отдельных конденсаторов. Всё в одном устройстве!
Теперь становится немного понятнее, каким образом эта энергия накапливалась в катушке: ток индукции был в магнитном поле, а ток самоиндукции накапливался в ёмкости между витками. Получается, что Тесла придумал, как зарядить конденсатор сразу от магнитного поля без преобразователей и потерь! На резонансной частоте реактивное сопротивление этой катушки должно падать до нуля, токи складываться, а не мешать друг другу и резко увеличиваться. А т.к. на этой частоте она не будет создавать помех другим катушкам индуктивности, то сможет служить источником энергии и трансформатор опять превратится в генератор.
Всё это буду проверять уже после отпуска, а в следующем посте расскажу про загадки генератора Фарадея.
Tags: Схема подключение электромагнита тельфера тэс 10000 531

Мастерская - уборка, перестановки, запуск тельфера.

Грузоподъемные электромагниты: устройство, схема включения. | Автор темы: Кабель


Грузоподъемные электромагниты: устройство, схема включения.


Использование грузоподъемных электромагнитов позволяет сократить длительность операций зацепления и снятия ферромагнитных материалов при транспортировке.

Грузоподъемные круглые электромагниты

Грузоподъемные круглые электромагниты типа М-22, М-42, М-62 советского производства (ранние аналоги - М-41, М-61 или поздние аналоги - М-23, М-43, М-63) предназначены для захвата и перемещения крановыми механизмами скрапа, металлолома, блюмса, поковок, пакетированного лома, рулонного проката. Но с успехом используются при переносе листового проката, длиномерного и при работе на траверсе. В СССР производились легкой серии (М-22, М-21), средней серии (М-42, М-41) и тяжелой серии (М-62, М-61).

Грузоподъемные прямоугольные электромагниты

Грузоподъемные прямоугольные электромагниты типа ПМ-15, ПМ-25 советского производства (поздние аналоги - ПМ-16, ПМ-26) предназначены для подъема и перемещения поковок, листового проката, блюмса. При установке на траверсу способны переносить длинномерный груз до 25 метров, (например рельсы). А так же используются для извлечения ферромагнитного материала (металловключений) из сыпучего груза транспортируемого по конвейерным лентам (транспортеру) при кратковременном включении металлоуловителем форсированного режима.

Грузоподъемные электромагниты с термостойкой изоляцией

Существуют также грузоподъемные электромагниты с термостойкой изоляцией, которые  предназначены для захвата и перемещения горячих грузов температурой до 500оС. Эти же магнитные шайбы могут переносить грузы температурой до 700оС, но при условии снижения ПВ (продолжительности включения) до 10-30% и с сокращением времени включения электромагнита до 1-ой - 2-х минут. Следует учесть, что магнитные свойства перемещаемого груза значительно ухудшаются при достижении 750оС.

Подъемные электромагниты рассчитываются на повторно-кратковременный резким работы с ПВ=50% при продолжительности цикла не более 10 мин.

Выбор подъемных электромагнитов производится по напряжению, режиму работы, подъемной силе, потребляемой мощности, форме груза и его температуре.

Устройство грузоподъемных электромагнитов ( на примере электромагнита круглой формы типа М-42)

Внутри стального корпуса грузоподъемного электромагнита помещается катушка, залитая компаундной массой. К корпусу болтами крепятся полюсные башмаки. Снизу катушка защищена кольцом из немагнитного материала. Токоподвод к катушке грузоподъемного электромагнита осуществляется гибким кабелем, который автоматически наматывается на кабельный барабан при подъеме и сматывается с него при спуске. Грузоподъемный электромагнит подвешивается к крюку цепями.

Подъемная сила грузоподъемного электромагнита зависит от характера и температуры поднимаемого груза: при большой плотности груза (плиты, болванки) подъемная сила увеличивается, при меньшей плотности (скрап, стружка) значительно уменьшается. С ростом температуры снижается магнитная проницаемость, достигая нуля при 720° С, вследствие чего подъемная сила также падает до нуля.

Катушки таких электромагнитов питаются постоянным током, имеют большую индуктивность и значительный поток остаточного магнетизма. Поэтому при отключении электромагнита должны быть приняты меры для ограничения перенапряжений, а также для быстрого освобождения электромагнита от груза.

Схема управления грузоподъемным электромагнитом

Управление подъемным электромагнитом производится обычно с помощью магнитного контроллера, панель которого с аппаратурой помещается в шкафу и устанавливается в кабине крановщика.

На рисунке показана принципиальная электрическая схема магнитного контроллера ПМС-50, имеющего: вводной выключатель (рубильник) ВВ, предохранители Пр1 и Пр2, включающий контактор KB, контактор размагничивания КР, резисторы ПС и PC.

Постоянный ток к катушке электромагнита Эм подводится от сети 220 В или от преобразовательного агрегата, установленного на кране.

Для захвата груза электромагнитом рукоятку командоконтроллера ставят в положение В. Замыкается контакт КК командоконтроллера. Получает питание контактор KB, который своими контактами подключает электромагнит Эм к источнику питания, и груз захватывается.
Чтобы освободить электромагнит от груза, рукоятку командоконтроллера переводят в положение О. Размыкается контакт КК, теряет питание контактор KB и отключается от источника катушки Эм но ток в ней мгновенно не исчезает, а под действием ЭДС самоиндукции продолжает протекать в том же направлении по цепи с резисторами ПС и PC. При этом напряжение между точками 1 и 2 оказывается достаточным, чтобы включился контактор КР. В результате катушка Эм оказывается под напряжением обратной полярности, ток в ней интенсивно уменьшается, а затем возрастает в обратном направлении до значения, необходимого для ликвидации остаточного магнетизма. Электромагнит освобождается от груза, даже весьма легкого, например от стружки.

В процессе изменения тока электромагнита напряжение на катушке КР уменьшается, и при некотором его значении контактор КР отключается, что приводит к разрыву цепи размагничивания, но катушка Эм остается замкнутой на резисторы. Это исключает недопустимые перенапряжения на электромагните.

Показать все / написать / или закрыть комментарий(ии)